Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(18)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36146439

RESUMO

The degree of maturity of oil palm fresh fruit bunches (FFB) at the time of harvest heavily affects oil production, which is expressed in the oil extraction rate (OER). Oil palm harvests must be harvested at their optimum maturity to maximize oil yield if a rapid, non-intrusive, and accurate method is available to determine their level of maturity. This study demonstrates the potential of implementing Raman spectroscopy for determining the maturity of oil palm fruitlets. A ripeness classification algorithm has been developed utilizing machine learning by classifying the components of organic compounds such as ß-carotene, amino acid, etc. as parameters to distinguish the ripeness of fruits. In this study, 47 oil palm fruitlets spectra from three different ripeness levels-under ripe, ripe, and over ripe-were examined. To classify the oil palm fruitlets into three maturity categories, the extracted features were put to the test using 31 machine learning models. It was discovered that the Medium, Weighted KNN, and Trilayered Neural Network classifier has a maximum overall accuracy of 90.9% by using four significant features extracted from the peaks as the predictors. To conclude, the Raman spectroscopy method may offer a precise and efficient means to evaluate the maturity level of oil palm fruitlets.


Assuntos
Arecaceae , Aminoácidos/análise , Arecaceae/química , Correlação de Dados , Frutas/química , Compostos Orgânicos , Óleo de Palmeira/análise , beta Caroteno/análise
2.
Sci Rep ; 11(1): 18315, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34526627

RESUMO

The oil yield, measured in oil extraction rate per hectare in the palm oil industry, is directly affected by the ripening levels of the oil palm fresh fruit bunches at the point of harvesting. A rapid, non-invasive and reliable method in assessing the maturity level of oil palm harvests will enable harvesting at an optimum time to increase oil yield. This study shows the potential of using Raman spectroscopy to assess the ripeness level of oil palm fruitlets. By characterizing the carotene components as useful ripeness features, an automated ripeness classification model has been created using machine learning. A total of 46 oil palm fruit spectra consisting of 3 ripeness categories; under ripe, ripe, and over ripe, were analyzed in this work. The extracted features were tested with 19 classification techniques to classify the oil palm fruits into the three ripeness categories. The Raman peak averaging at 1515 cm-1 is shown to be a significant molecular fingerprint for carotene levels, which can serve as a ripeness indicator in oil palm fruits. Further signal analysis on the Raman peak reveals 4 significant sub bands found to be lycopene (ν1a), ß-carotene (ν1b), lutein (ν1c) and neoxanthin (ν1d) which originate from the C=C stretching vibration of carotenoid molecules found in the peel of the oil palm fruit. The fine KNN classifier is found to provide the highest overall accuracy of 100%. The classifier employs 6 features: peak intensities of bands ν1a to ν1d and peak positions of bands ν1c and ν1d as predictors. In conclusion, the Raman spectroscopy method has the potential to provide an accurate and effective way in determining the ripeness of oil palm fresh fruits.

3.
PeerJ ; 8: e10346, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33240655

RESUMO

Stem cells are primitive and precursor cells with the potential to reproduce into diverse mature and functional cell types in the body throughout the developmental stages of life. Their remarkable potential has led to numerous medical discoveries and breakthroughs in science. As a result, stem cell-based therapy has emerged as a new subspecialty in medicine. One promising stem cell being investigated is the induced pluripotent stem cell (iPSC), which is obtained by genetically reprogramming mature cells to convert them into embryonic-like stem cells. These iPSCs are used to study the onset of disease, drug development, and medical therapies. However, functional studies on iPSCs involve the analysis of iPSC-derived colonies through manual identification, which is time-consuming, error-prone, and training-dependent. Thus, an automated instrument for the analysis of iPSC colonies is needed. Recently, artificial intelligence (AI) has emerged as a novel technology to tackle this challenge. In particular, deep learning, a subfield of AI, offers an automated platform for analyzing iPSC colonies and other colony-forming stem cells. Deep learning rectifies data features using a convolutional neural network (CNN), a type of multi-layered neural network that can play an innovative role in image recognition. CNNs are able to distinguish cells with high accuracy based on morphologic and textural changes. Therefore, CNNs have the potential to create a future field of deep learning tasks aimed at solving various challenges in stem cell studies. This review discusses the progress and future of CNNs in stem cell imaging for therapy and research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...